Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning.
نویسندگان
چکیده
BACKGROUND Accumulating evidence pinpoints to the pivotal role of mitogen-activated protein kinases (MAPKs) in the signal transduction underlying cardiac preconditioning. METHODS PD98059, an inhibitor of extracellular signal-regulated protein kinase (MEK-ERK1/2), and SB203580, an inhibitor of p38 MAPK, were used to evaluate the role of MAPKs with respect to postischemic functional recovery in isolated perfused rat hearts subjected to ischemic preconditioning (IPC) and anesthetic preconditioning (APC). Western blot analyses were used to determine the degree of ERK1/2 and p38 MAPK activation after the application of the preconditioning stimulus and after ischemia-reperfusion. Immunohistochemical staining served to visualize subcellular localization of activated MAPKs. RESULTS PD98059 and SB203580 abolished postischemic functional recovery in IPC but not in APC. IPC but not APC markedly activated ERK1/2 and p38 MAPK, which were abrogated by coadministration of the specific blockers. Conversely, IPC and APC enhanced ERK1/2 activity after ischemia-reperfusion as compared to nonpreconditioned hearts, and IPC in addition enhanced p38 MAPK activity. Coadministration of PD98059 and SB203580 during IPC but not during APC inhibited postischemically enhanced MAPK activities. Moreover, chelerythrine and 5-hydroxydecanoate, effective blockers of IPC and APC, annihilated IPC- and APC-induced enhanced postischemic responses of MAPKs. Finally, administration of PD98059 during ischemia-reperfusion diminished the protective effects of IPC and APC. Immunohistochemistry revealed increased ERK1/2 activity primarily in intercalated discs and nuclei and increased p38 MAPK activity in the sarcolemma and nuclei of IPC-treated hearts. CONCLUSIONS Although MAPKs may orchestrate cardioprotection as triggers and mediators in IPC, they are devoid of triggering, but they may have mediator effects in APC.
منابع مشابه
Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases.
A brief exposure to the volatile anesthetic isoflurane (preconditioning) induces ischemic tolerance in rat brain. However, whether isoflurane preconditioning improves long-term neurological outcome after brain ischemia and the mechanisms for this neuroprotection are not known. Here, we report that isoflurane preconditioning (2% isoflurane for 30 min at 24 h before brain ischemia) reduced brain ...
متن کاملIschemic preconditioning of myocardium.
Preconditioning of the myocardium with short episodes of sublethal ischemia will delay the onset of necrosis during a subsequent lethal ischemic insult. Ischemic preconditioning seems to involve a variety of stress signals which include activation of membrane receptors and signaling molecules such as protein kinase C, mitogen-activated protein kinases, opening of ATP-sensitive potassium channel...
متن کاملRho-Rho kinase pathway is involved in the protective effect of early ischemic preconditioning in the rat heart.
It has been shown that p38 mitogen-activated protein (MAP) kinase is absolutely necessary for the cardioprotection of early ischemic preconditioning in the heart. Reorganization of actin cytoskeleton after translocation of HSP27, which is mediated by p38 MAP kinase, was reported to be necessary for the cardioprotective effect of early ischemic preconditioning. Although Rho and Rho kinase are re...
متن کاملA Continuous Debate about Cerebral Ischemic Preconditioning in the
Ischemic preconditioning (IPC) is defined as brief episodes of ischemia followed by a long period of ischemia, representing the most powerful endogenous mechanism against the injurious effects of ischemia [1]. Several studies in animals and humans have clearly demonstrated the capacity of IPC to protect organs against ischemic injury (see reviews [2,3]). Various pathways have been implicated in...
متن کاملCardiac Preconditioning by Anesthetic Agents: Roles of Volatile Anesthetics and Opioids in Cardioprotection
Cardiac preconditioning is the most potent and consistently reproducible method of protecting heart tissue against myocardial ischemia-reperfusion injury. This review discussed about the signaling and amplification cascades from either ischemic preconditioning stimulus or pharmacological preconditioning stimulus, the putative end-effectors and the mechanisms involved in cellular protection. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2004